If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7x^2-488)=0
We get rid of parentheses
7x^2-488=0
a = 7; b = 0; c = -488;
Δ = b2-4ac
Δ = 02-4·7·(-488)
Δ = 13664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13664}=\sqrt{16*854}=\sqrt{16}*\sqrt{854}=4\sqrt{854}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{854}}{2*7}=\frac{0-4\sqrt{854}}{14} =-\frac{4\sqrt{854}}{14} =-\frac{2\sqrt{854}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{854}}{2*7}=\frac{0+4\sqrt{854}}{14} =\frac{4\sqrt{854}}{14} =\frac{2\sqrt{854}}{7} $
| -3y-11=9y+14 | | -30-a=-2(8+2a)-4a | | |x+2|=5-x | | 8(r+2=64 | | 9+3x+(2x-2)=67 | | (x-12)+x=-5 | | 6-6x=6(x+7) | | 5x-8=123 | | 20-6x=50-26x | | -6(x-3)-4(x-2)=-4 | | 1/4(a+10)=10 | | n=13÷-1 | | 13+2x-14=x | | (3x-11)+x=49 | | 3x+4=7(x+2)+2 | | 10+x=5(x+2) | | 6+1x=33-2x | | m-12/4-4m-3/5=2 | | 9+3x+2x-2=67 | | 3x-7=9x-25 | | (x-4)(x-18)=x-14 | | 40-5x=-55 | | 12a+4a(2)+9=0 | | 8n-6(n+4)=-(-8+2n) | | -3=x-5/7 | | 70=28-14x | | 12a+4a*4a+9=0 | | 1/3x+1/4x=2x-17 | | 6y−3=6y+8 | | 42x+158=1166 | | 8x^2-48x=-135 | | 6y+5+5Y+7=15y-20 |